Instituto Superior de Economia e Gestão

Masters in Economics and Masters in Monetary and Financial Economics

Microeconomics

Midterm Test - Solution Topics

(Topics only!)

Question 1

(4 marks) Show that if preferences \gtrsim are represented by a utility function, then \gtrsim satisfy transitivity.

Consider any 3 consumption bundles x, y, and z such that $\mathrm{x} \gtrsim \mathrm{y}$ and $\mathrm{y} \gtrsim \mathrm{z}$. Let \gtrsim be represented by the utility function $u($.$) . Then, we have u(x) \geq u(y)$ and $u(y) \geq u(z)$. Since \geq (defined on the set of real numbers) is transitive, we have $u(x) \geq u(z)$. Given that $u($.$) represents \gtrsim$, it follows that $\mathrm{x} \gtrsim \mathrm{z}$.

Question 2

A consumer has preferences over goods x and m represented by the utility function:

$$
u(x, m)=\ln (x)+m .
$$

Let p be the price of x, let the price of m be equal to 1 , and let income be equal to y. Assume that the consumption set is $(-\infty, \infty) \times$, i.e., m may be negative.

1. (3 marks) Derive the Marshallian demands for x and m. Note that the demand for x is independent of income.

The consumer problem is: $\operatorname{Max} u(x, m)=\ln (x)+m$. s.t. $m+p . x \leq y$ and $x \geq 0$. Since $u($.$) is$ increasing in x and in m , the solution must satisfy budget balancedness. It follows that $m=y$ $p . x$ and the problem becomes: $\operatorname{Max} \ln (x)+y-p . x$. s.t. $x \geq 0$.
The solution to this problem has $x^{*}>0$ (given the \ln), namely, $x^{*}=1 / p$ and $m^{*}=y-1$.
2. (1.5 marks) Derive the indirect utility function.

The indirect utility function is $v(p, y)=\ln (1 / p)+y-1$.
3. (1.5 marks) Use the Slutsky equation to decompose the effect of an own-price change on the demand for x into income and substitution effects.

Marshallian demand is $x(p, y)=1 / p$. Since it does not depend on income, the derivative of this function with respect to income is 0 . Using the Slutsky equation, we then know that the effect of an own-price change on the Marshallian demand for x equals the substitution effect (i.e., the effect of an own-price change on the Hicksian demand for x).

Now assume that m can only assume non-negative values.
4. (2 marks) Is the demand for x still independent of income? Why or why not?

No. In this case, we have to solve the utility maximization problem again, but considering an additional restriction: $m \geq 0$. The problem is: $\operatorname{Max} u(x, m)=\ln (x)+m$. s.t. $m+p . x \leq y$ and $x \geq 0, m$ ≥ 0. Again, the budget constraint must be satisfied with equality and (given the ln), we must have $x^{*}>0$. Then, there are two types of solutions:
a) $\lambda^{*}=1: x^{*}=1 / \mathrm{p}$ and $m^{*}=y-1$ and
b) $\lambda^{*}>1: m^{*}=0, x^{*}=y / p$, and we must have $\lambda^{*}=1 / y>1$ or $y<1$

Question 3

Consider a Leontief production function of the form $f\left(x_{1}, x_{2}\right)=\min \left\{a x_{1}, b x_{2}\right\}$, with $a>0$ and $b>0$.

1. (1 mark) Sketch the isoquant map for this technology.
2. (4 marks) Solve the cost minimization problem and derive the cost function.

The solution must have $\min \left\{a x_{1}{ }^{*}, b x_{2}{ }^{*}\right\}=y$ and $a x_{1}{ }^{*}=b x_{2}{ }^{*}$. Then, the problem Min $w_{1} \cdot x_{1}+w_{2} . x_{2}$. s.t. $\min \left\{a x_{1}, b x_{2}\right\} \geq y$ and $x_{1}, x_{2} \geq 0$ becomes:

$$
\operatorname{Min} w_{1} \cdot x_{1}+w_{2} \cdot a \cdot x_{1} / b \text { s.t. } a x_{1}=y \text { and } x_{1}, x_{2} \geq 0 .
$$

So that the solution is $x_{1}{ }^{*}=y / a$ and $x_{2}{ }^{*}=y / b$. And the cost function is $\mathrm{c}\left(w_{1}, w_{2}, y\right)=\left(w_{1} / a+\right.$ $\left.w_{2} / \mathrm{b}\right) y$.
3. (1 mark) Without trying to solve the profit maximization problem, can you tell whether there is a solution for this problem? Justify.

No, unless the profit function is equal to zero (which happens for certain price levels).

Question 4

(3 marks) Show that if a production function is homogeneous of degree 2, then it exhibits increasing returns to scale.

Let f .) be a production function that is homogeneous of degree 2, i.e., $\mathrm{f}(\mathrm{t} . \mathrm{x})=\mathrm{t}^{2} \mathrm{f}(\mathrm{x})$ for all $\mathrm{t}>0$ and all x. Since $t^{2} f(x)>\operatorname{tf}(x)$, for all $t>1$, then $f($.) satisfies $f(t . x)>t f(x)$ for all $t>1$ and all x, i.e., $f()$. exhibits increasing returns to scale.

